图书介绍

发展型积分-微分方程的有限元方法2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

发展型积分-微分方程的有限元方法
  • 张铁著 著
  • 出版社: 沈阳:东北大学出版社
  • ISBN:7810546961
  • 出版时间:2001
  • 标注页数:225页
  • 文件大小:6MB
  • 文件页数:240页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

发展型积分-微分方程的有限元方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 预备知识1

1 Sobolev空间简介1

2 嵌入定理、迹定理3

3 有限元空间及其性质6

3.1 有限元空间6

3.2 插值逼近性质8

3.3 有限元逆性质10

4 椭圆边值问题的有限元逼近11

4.1 椭圆边值问题的适定性11

4.2 有限元逼近13

第二章 有限元Ritz-Volterra投影16

1 符号和不等式16

2 存在惟一性及L2和H1模逼近性质19

3 负模误差估计23

4.1 Creen函数的定义25

4 时间依赖型Green函数及其估计25

4.2 Green函数的估计29

5 W1,p模稳定性和Lp模(2≤p≤∞)模逼近性质44

6 广义Ritz-Volterra投影逼近49

第三章 抛物型积分-微分方程的有限元方法54

1 解的正则性理论55

2 半离散有限元逼近63

3 全离散有限元格式69

3.1 向后欧拉格式70

3.2 Crank-Nicolson格式73

4 全离散有限元格式的修正78

5 有限元解的长时间稳定性与误差估计84

6 带弱奇异积分核问题89

第四章 某些发展型方程的有限元方法97

1 双曲型积分-微分方程97

2 Sobolev方程101

3 粘弹性方程103

4.1 问题及其有限元近似107

4 Stokes型积分-微分方程107

4.2 一个广义Ritz-Volterra投影109

4.3 误差估计111

第五章 非线性问题的有限元逼近116

1 一个非线性投影逼近116

2 非线性抛物型积分-微分方程123

3 非线性双曲型积分-微分方程125

4 非线性Sobolev方程128

第六章 有限元超收敛性:一维问题132

1 有限元Ritz-Volterra投影的节点超收敛性133

2 抛物型积分-微分方程有限元逼近的节点超收敛性138

3 一维投影型插值及其超收敛性质145

3.1 一维投影型插值145

3.2 超收敛基本估计147

4 有限元逼近的函数和导数的超收敛点149

4.1 有限元Ritz-Volterra投影149

4.2 抛物型积分-微分方程152

5 导数小片插值恢复技术154

第七章 有限元超收敛性:二维问题160

1 有限元Ritz-Volterra投影的超收敛性质160

2 抛物型积分-微分方程有限元逼近的超收敛性质164

3 二维投影型插值及其超收敛性质167

3.1 二维投影型插值167

3.2 超收敛基本估计170

3.3 对有限元Ritz-Volterra投影的应用177

4.1 线性三角元179

4 线性有限元导数恢复技术179

4.2 双线性矩形元182

4.3 双线性四边形元183

第八章 有限体积元方法187

1 基于有限体积元的Ritz-Volterra投影187

2 最优阶误差估计193

3 抛物型积分-微分方程的有限体积元方法200

4 最低的正则性条件:两个反例204

参考文献211

热门推荐