图书介绍

多元有理函数系统与电网络 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

多元有理函数系统与电网络 英文版
  • 鲁凯生著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:7040346930
  • 出版时间:2012
  • 标注页数:304页
  • 文件大小:14MB
  • 文件页数:316页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

多元有理函数系统与电网络 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

References8

2 Matrices over Field F(z)of Rational Functions in Multi-parameters11

2.1 Polynomials over Field F(z)or Ring F(z)[λ]11

2.2 Operations and Determinant of Matrix over F(z)12

2.3 Elementary Operations of Matrices over F(z)and Some Conclusions12

2.4 Operation and Canonical Form of Matrix over F(z)14

2.4.1 Matrix over F(z)and its canonical expression14

2.4.2 Characteristic matrix23

2.4.3 Two canonical forms of nonderogatory matrix27

2.4.4 Rational canonical form and general Jordan canonical form32

2.5 Reducibility of Square Matrix over F(z)35

2.6 Reducibility Condition of Class of Matrices over F(z)36

2.6.1 A class of RFM36

2.6.2 Some lemmas and definitions36

2.6.3 Reducibility condition39

2.6.4 Applications48

2.6.5 Summary51

2.7 Two Properties51

2.7.1 Some lemmas52

2.7.2 Type-1 matrix has two properties54

2.7.3 Problems59

2.8 Independent Parameters and a Class of Irreducible Polynomials over F(z)[λ]59

2.9 Conclusions64

2.10 New Model and Its Reducibility68

2.10.1 The new model68

2.10.2 Reducibility condition69

References71

3 Controllability and Observability of Linear Systems over F(z)73

3.1 Controllability and Observability in Time Domain73

3.1.1 Preliminaries [Lu,2001]73

3.1.2 Controllability criteria[Lu,2001]75

3.1.3 The canonical decomposition of controllability and observability of systems87

3.1.4 Criterions to linear physical systems89

3.1.5 Applications to control systems100

3.2 Controllability and Observability in Frequency Domain102

3.2.1 General systems[Lu et al.,1991]102

3.2.2 SC-SO of composite systems[Lu et al.,1991]106

3.2.3 Polynomial matrix [Liu,2008]113

References120

4 Electrical Networks over F(z)121

4.1 Resistor-Source Networks over F(z)121

4.1.1 Introduction121

4.1.2 General resistor-source networks123

4.1.3 Unhinged networks131

4.1.4 Effects of single source135

4.2 Separability and Reducibility Conditions of RLC Networks over F(z)and Their Applications140

4.2.1 Introduction140

4.2.2 Preliminaries141

4.2.3 Separability condition143

4.2.4 Separability and reducibility146

4.2.5 Applications147

4.3 Controllability and Observability of RLC Networks over F(z)149

4.4 Structural Condition of Controllability for RLC Networks over F(z)151

4.4.1 Separability conditions151

4.4.2 Structural controllability conditions154

4.5 Structural Condition of Observability for RLC Networks over F(z)155

4.5.1 Node voltage equation and two results156

4.5.2 Structural condition of observability over F(z)158

4.6 Separability,Reducibility,Controllability and Observability of RLCM Networks over F(z)160

4.6.1 Preliminaries160

4.6.2 Separability161

4.6.3 Reducibility166

4.6.4 Controllability and observability168

4.6.5 Structural condition of controllability and observability over F(z)173

4.7 Existence of State Equations of Linear Active Networks over F(z)177

4.7.1 Existence condition of state equation over F(z)177

4.7.2 Application181

4.8 A Sufficient Condition on Controllability and Observability of Active Networks over F(z)185

4.8.1 Preliminaries186

4.8.2 Sufficient condition of controllability over F(z)189

4.8.3 Applications189

4.9 Conditions on ?11≠0 and ?≠0 of Active Network over F(z)and Reducibility Condition of ? and Their Applications to Controllability and Observability190

4.9.1 Preliminaries191

4.9.2 Partitioning of?and u2 from u1193

4.9.3 Conditions of ?11≠0198

4.9.4 Reducibility of ? and conditions of ?≠0203

4.9.5 Examples207

4.9.6 Applications to controllability and observability over F(z)213

4.9.7 Method of designing a structural controllable and observable active network with normal form223

4.10 Computer Assistant Analysis Program for Networks over F(z)224

4.10.1 Software interface illumination224

4.10.2 Structural analysis process description of the software226

4.10.3 Software functions232

References235

5 Further Thought237

5.1 Independent Parameters—The Third Type of Variables of Systems237

5.2 Physical Realization238

5.2.1 Canonical state space description of linear time-invariant systems238

5.2.2 Two basic properties239

5.3 Some Issues240

5.3.1 Is it irreducible when exist interaction?241

5.3.2 Dimension of nonzero mode≤number of independent parameters242

5.3.3 Design of active networks being SC-SO and stable242

5.4 Quasi Structural Controllability and Observability Concept of Nonlinear Systems and Its Applications243

5.4.1 Preliminaries243

5.4.2 Quasi-structural controllability of nonlinear systems245

5.4.3 Applications246

5.4.4 Conclusions249

References249

Appendix251

Appendix A Some Well-known Results251

A.1 Linear systems theory over R251

A.1.1 Controllability criterions in time domain251

A.1.2 Polynomial matrix theory in frequency domain253

A.2 Graph theory258

A.3 Linear graph262

A.3.1 Linear graph262

A.3.2 Relationships in RLC networks272

Appendix B Some Relevant Proofs in Theorem 4.11274

B.1 The proof of ?12≠0274

B.2 The proof of ?12≠0275

B.3 The proof of ?12≠0277

B.4 The proof of ?12≠0 or ?12≠0279

Appendix C Proof of Theorem 4.15282

Appendix D Proofs of some conclusions287

D.1 The proof of Theorem 4.18287

D.2 The proof of Theorem 4.19293

D.3 Some results297

References302

Index303

热门推荐