图书介绍

计算物理学导论2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

计算物理学导论
  • (美)庞涛著 著
  • 出版社: 上海:世界图书上海出版公司
  • ISBN:9787510035203
  • 出版时间:2011
  • 标注页数:385页
  • 文件大小:15MB
  • 文件页数:402页
  • 主题词:计算物理学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计算物理学导论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Computation and science1

1.2 The emergence of modern computers4

1.3 Computer algorithms and languages7

Exercises14

2 Approximation of a function16

2.1 Interpolation16

2.2 Least-squares approximation24

2.3 The Millikan experiment27

2.4 Spline approximation30

2.5 Random-number generators37

Exercises44

3 Numerical calculus49

3.1 Numerical differentiation49

3.2 Numerical integration56

3.3 Roots of an equation62

3.4 Extremes of a function66

3.5 Classical scattering70

Exercises76

4 Ordinary differential equations80

4.1 Initial-value problems81

4.2 The Euler and Picard methods81

4.3 Predictor-corrector methods83

4.4 The Runge-Kutta method88

4.5 Chaotic dynamics of a driven pendulum90

4.6 Boundary-value and eigenvalue problems94

4.7 The shooting method96

4.8 Linear equations and the Sturm-Liouville problem99

4.9 The one-dimensional Schrodinger equation105

Exercises115

5 Numerical methods for matrices119

5.1 Matrices in physics119

5.2 Basic matrix operations123

5.3 Linear equation systems125

5.4 Zeros and extremes of multivariable functions133

5.5 Eigenvalue problems138

5.6 The Faddeev-Leverrier method147

5.7 Complex zeros of a polynomial149

5.8 Electronic structures of atoms153

5.9 The Lanczos algorithm and the many-body problem156

5.10 Random matrices158

Exercises160

6 Spectral analysis164

6.1 Fourier analysis and orthogonal functions165

6.2 Discrete Fourier transform166

6.3 Fast Fourier transform169

6.4 Power spectrum of a driven pendulum173

6.5 Fourier transform in higher dimensions174

6.6 Wavelet analysis175

6.7 Discrete wavelet transform180

6.8 Special functions187

6.9 Gaussian quadratures191

Exercises193

7 Partial differential equations197

7.1 Partial differential equations in physics197

7.2 Separation of variables198

7.3 Discretization of the equation204

7.4 The matrix method for difference equations206

7.5 The relaxation method209

7.6 Groundwater dynamics213

7.7 Initial-value problems216

7.8 Temperature field of a nuclear waste rod219

Exercises222

8 Molecular dynamics simulations226

8.1 General behavior of a classical system226

8.2 Basic methods for many-body systems228

8.3 The Verlet algorithm232

8.4 Structure of atomic clusters236

8.5 The Gear predictor-corrector method239

8.6 Constant pressure,temperature,and bond length241

8.7 Structure and dynamics of real materials246

8.8 Ab initio molecular dynamics250

Exercises254

9 Modeling continuous systems256

9.1 Hydrodynamic equations256

9.2 The basic finite element method258

9.3 The Ritz variational method262

9.4 Higher-dimensional systems266

9.5 The finite element method for nonlinear equations269

9.6 The particle-in-cell method271

9.7 Hydrodynamics and magnetohydrodynamics276

9.8 The lattice Boltzmann method279

Exercises282

10 Monte Carlo simulations285

10.1 Sampling and integration285

10.2 The Metropolis algorithm287

10.3 Applications in statistical physics292

10.4 Critical slowing down and block algorithms297

10.5 Variational quantum Monte Carlo simulations299

10.6 Green’s function Monte Carlo simulations303

10.7 Two-dimensional electron gas307

10.8 Path-integral Monte Carlo simulations313

10.9 Quantum lattice models315

Exercises320

11 Genetic algorithm and programming323

11.1 Basic elements of a genetic algorithm324

11.2 The Thomson problem332

11.3 Continuous genetic algorithm335

11.4 Other applications338

11.5 Genetic programming342

Exercises345

12 Numerical renormalization347

12.1 The scaling concept347

12.2 Renormalization transform350

12.3 Critical phenomena:the Ising model352

12.4 Renormalization with Monte Carlo simulation355

12.5 Crossover:the Kondo problem357

12.6 Quantum lattice renormalization360

12.7 Density matrix renormalization364

Exercises367

References369

Index381

热门推荐